
A combinatorial game on rooted Galton-Watson
trees

Moumanti Podder

Indian Institute of Science Education & Research (IISER) Pune

IIT Kharagpur, Department of Mathematics
Weekly Online Seminar

December 3, 2021

1 / 16



What’s a rooted Galton-Watson tree?

▶ Start with root vertex ϕ, and an offspring distribution χ (which is
a probability distribution supported on N0).

▶ Let ϕ have X0 children where X0 ∼ χ (i.e. P[X0 = k] = χ(k) for
all k ∈ N0).

▶ Conditioned on X0 = m, enumerate the children of ϕ as
v1, . . . , vm. Let vi have Xi children, where X1, . . . , Xm are i.i.d. χ.

▶ Continue thus. This stochastic process (called a branching
process) yields a (random) rooted tree Tχ.

▶ Classical result: Tχ has a positive probability of being infinite (i.e.
of survival) if and only if µ :=

∑
k∈N0

kχ(k) > 1.

2 / 16



What are combinatorial games?

▶ The ones I study are played on graphs, and in particular, random
graphs (such as rooted Galton-Watson trees or Erdős-Rényi
random graphs).

▶ Usually played between two players (their roles in the game may
or may not be symmetric to one another). Let us call these players
P1 and P2.

▶ The graph on which the game is being played is revealed in its
entirety to the two players (this means that the players can and
must use look-ahead strategies to decide their moves). In this
sense, these games are perfect information games.

▶ Both players play optimally, i.e. if in a game, P1 is destined to
win, then she tries to win as quickly (efficiently) as possible,
whereas P2 tries to prolong the game as much as she can.

3 / 16



Why think about such games?

▶ The short answer is: they are immensely useful in mathematical
logic, automaton theory and computer science.

▶ They help understand local as well as global structures / patterns
inside the random graphs / trees the games are being played on.

▶ As an example, the Ehrenfeucht-Fräıssé games help investigate
whether two graphs / trees are “equivalent” as far as sentences
from first order logic of a given quantifier depth are concerned.

▶ The game I study here is called the normal game. I shall illustrate
how this game relates with finite state tree automata.

4 / 16



The simplest normal game

▶ Studied by Alexander E. Holroyd and James Martin in their 2018
paper, “Galton-Watson Games”.

▶ Tχ is visualized as a directed graph, where edge {u, v} between
parent u and child v is assumed directed from u to v (and denoted
(u, v)).

▶ A token is placed at some vertex v of Tχ at the beginning of the
game. We call v the initial vertex.

▶ Players P1 and P2 take turns to move a token along these directed
edges. Whoever fails to move (i.e. reaches a leaf vertex), loses the
game.

5 / 16



The version I study: it involves jumps!

▶ Fix a positive integer k.

▶ Let ρ denote the usual graph metric on Tχ.

▶ For any vertex u in Tχ, let

Γi(u) = {v ∈ Tχ \ {u} : ρ(u, v) ⩽ i and v a descendant of u}.

▶ When it is Pi’s turn to move (where i ∈ {1, 2}), and the token is
at some vertex u, Pi may move the token to any vertex v ∈ Γk(u).

▶ Thus, unlike the simplest version, v here need not be a child of u,
but needs to be some descendant of u at distance at most k from u.

6 / 16



How do we analyze these games?

▶ Let us consider the simplest version first.

▶ Let NW denote the set of all vertices v such that if v is the initial
vertex, whoever plays the first round, wins.

▶ Let NL denote the set of all vertices v such that if v is the initial
vertex, whoever plays the first round, loses.

▶ Let nw and nℓ respectively denote the probabilities of ϕ being in
NW and NL.

▶ It is easy to establish recursion relations for nw and nℓ from the
description of the game.

7 / 16



The recursions for the simplest version

▶ For a vertex u to be in NW, it must have at least one child v, such
that if the player who plays the first round (say, P1) moves the
token to v in the first round, then the game that begins with v as
the initial vertex (and whose first round is played by P2) is lost by
P2. This means that v ∈ NL.

▶ Thus u ∈ NW if and only if at least one child of u is in NL. This
yields

nw =

∞∑
m=1

{1− (1− nℓ)m}χ(m) = 1−G(1− nℓ),

where G is the probability generating function of χ.

8 / 16



The recursions for the simplest version, continued

▶ For u to be in NL, no matter which child v of u P1 (who plays the
first round) moves the token to from the initial vertex u, the game
that begins with v as the initial vertex and P2 playing the first
round is won by P2. That is, v ∈ NW.

▶ Thus u ∈ NL if and only if every child v of u is in NW. This yields

nℓ =

∞∑
m=0

(nw)mχ(m) = G(nw).

9 / 16



Connection with finite state tree automata

▶ A finite state automaton is a kind of state machine used in
mathematical computing.

▶ A finite state tree automaton comprises a finite set Σ of “states”
or “colours”, and a “rule” Γ, which is a function from NΣ

0 to Σ.

▶ If a vertex u has mi many children that are in state i, for all i ∈ Σ,
then the state of the parent vertex u is given by

Γ(mi : i ∈ Σ).

▶ We now see the desired connection: let Σ = {NW,NL}. Then

Γ(mNW,mNL) = NW as long as mNL ⩾ 1,

whereas
Γ(mNW,mNL) = NL as long as mNL = 0.

10 / 16



The more complicated recursions for the jump version
▶ For u to be in NW, at least one v ∈ Γk(u) must be in NL.
▶ This leads to defining several new classes of vertices:

1. A vertex v is in C0,1 if it has at least one child in NL.
2. For all 2 ⩽ i ⩽ k − 1, a vertex v is in C0,i if it has at least one child

in C0,i−1, but v itself is not in
⋃i−1

j=1 C0,j .
▶ These definitions imply that u is in NW if and only if it has at

least one child v that is either in NL or in
⋃k−1

j=1 C0,j .
▶ Notice that by definition, C0,1, . . . ,C0,k−1 are all pairwise disjoint,

and each is disjoint from NL because if a vertex belongs to C0,i,
then it is also in NW.

▶ Let P[ϕ ∈ C0,i] = p0,i. We then have

nw =

∞∑
m=1

{
1−

(
1− nℓ−

k−1∑
i=0

p0,i

)m}
χ(m)

= 1−G

(
1− nℓ−

k−1∑
i=0

p0,i

)
.

11 / 16



Recursions for the jump version, continued

▶ For u to be in NL, every v ∈ Γk(u) must be in NW.

▶ This leads to defining the following new classes of vertices: for
0 ⩽ i < j ⩽ k, Ci,j is the set of all vertices v such that

1. Γi(v) ⊂ NW,
2. Γj−1(v) ∩NL = ∅,
3. there exists some vertex in Γj(v) \ Γj−1(v) that is in NL.

▶ Note that C0,j is obtained by setting i = 0 in the above definition,
for each j.

▶ Let pi,j = P[ϕ ∈ Ci,j ] for all 0 ⩽ i < j ⩽ k.

▶ We then see that u ∈ NL if and only if every child of u is in Ck−1,k.
Hence

nℓ =

∞∑
m=0

(pk−1,k)
mχ(m) = G(pk−1,k).

12 / 16



What these recursions lead to

▶ We can establish recursions relating Ci,j with Ci−1,ℓ for all
ℓ ⩾ j − 1, and thereby, recursions connecting all the pi,js with each
other.

▶ These recursions, combined together, allow us to write nℓ = H(nℓ)
for a rather complicated function H.

▶ In fact, by considering subsets NL(n) ⊂ NL that comprise vertices
v such that a game starting at v lasts < n many rounds, for n ∈ N,
and applying the recursions to these more refined subsets, we can
conclude that nℓ is the smallest fixed point of H in [0, 1].

▶ We can then obtain nw as a function of nℓ.

13 / 16



Is there a connection between the jump version and
automata?

▶ Consider a generalized notion of finite state tree automata: we are
now provided the states (in Σ) to which all the vertices of Γk(u)
belong.

▶ The state of u is then determined from the states of all vertices in
Γk(u).

▶ In our set-up, let Σ = {NW,NL}, and the rule of the automaton
states that:

1. u ∈ NW if at least one vertex in Γk(u) is in NL,
2. and u ∈ NL if evert vertex in Γk(u) is in NW.

14 / 16



Further results I have so far

▶ A popular offspring distribution to consider for rooted
Galton-Watson trees is Poisson(λ) for various values of λ > 0.
Recall that in this case,

χ(i) = e−λ · λ
i

i!
.

▶ We consider ND to be the set of all vertices v not in NW∪NL, i.e.
if such a v is an initial vertex, the game ends in a draw. Let
nd = P[ϕ ∈ ND].

▶ From the previously described recursions, one can find a necessary
and sufficient condition for nd to be positive.

▶ I show that nd = nd(λ) > 0 for all λ sufficiently large.

▶ In fact, I establish that nℓ = nℓ(λ) → 0 as λ → ∞, which in turn
ensures that nw = nw(λ) → 0 as λ → ∞, and thus nd = nd(λ) → 1
as λ → ∞.

15 / 16



Thank you!

16 / 16


